vec4.h File Reference
Go to the documentation of this file.
Source: include/ffw/graphics/vec4.h
/* This file is part of FineFramework project */
#ifndef FFW_VEC4
#define FFW_VEC4
#include <ostream>
#include <limits>
#include <cmath>
namespace ffw {
template <class T> struct Vec4 {
public:
T x;
T y;
T z;
T w;
inline Vec4() {
x = 0;
y = 0;
z = 0;
w = 0;
}
inline Vec4(T compx, T compy, T compz, T compw) {
x = compx;
y = compy;
z = compz;
w = compw;
}
inline Vec4(T val) {
x = val;
y = val;
z = val;
w = val;
}
inline Vec4(const Vec4<T>& vec) {
x = vec.x;
y = vec.y;
z = vec.z;
w = vec.w;
}
inline Vec4(const std::initializer_list<T>& list) {
if (list.size() != 4) {
x = 0;
y = 0;
z = 0;
w = 0;
return;
}
x = *(list.begin());
y = *(list.begin() + 1);
z = *(list.begin() + 2);
w = *(list.begin() + 3);
}
inline void set(T compx, T compy, T compz, T compw) {
x = compx;
y = compy;
z = compz;
w = compw;
}
inline void set(T val) {
x = val;
y = val;
z = val;
w = val;
}
inline void set(const Vec4<T>& vec) {
x = vec.x;
y = vec.y;
z = vec.z;
w = vec.w;
}
inline void set(const std::initializer_list<T>& list) {
if (list.size() != 4)return;
x = *(list.begin());
y = *(list.begin() + 1);
z = *(list.begin() + 2);
w = *(list.begin() + 3);
}
inline ffw::Vec4<T> operator - () const {
return Vec4<T>(-x, -y, -z, -w);
}
inline ffw::Vec4<T>& operator = (const Vec4<T>& vec) {
x = vec.x;
y = vec.y;
z = vec.z;
w = vec.w;
return *this;
}
inline ffw::Vec4<T> operator + (const Vec4<T>& vec) const {
return Vec4<T>(x + vec.x, y + vec.y, z + vec.z, w + vec.w);
}
inline ffw::Vec4<T>& operator += (const Vec4<T>& vec) {
x += vec.x;
y += vec.y;
z += vec.z;
w += vec.w;
return *this;
}
inline ffw::Vec4<T> operator - (const Vec4<T>& vec) const {
return Vec4<T>(x - vec.x, y - vec.y, z - vec.z, w - vec.w);
}
inline ffw::Vec4<T>& operator -= (const Vec4<T>& vec) {
x -= vec.x;
y -= vec.y;
z -= vec.z;
w -= vec.w;
return *this;
}
inline ffw::Vec4<T> operator / (const Vec4<T>& vec) const {
return Vec4<T>(x / vec.x, y / vec.y, z / vec.z, w / vec.w);
}
inline ffw::Vec4<T>& operator /= (const Vec4<T>& vec) {
x /= vec.x;
y /= vec.y;
z /= vec.z;
w /= vec.w;
return *this;
}
inline ffw::Vec4<T> operator * (const Vec4<T>& vec) const {
return Vec4<T>(x * vec.x, y * vec.y, z * vec.z, w * vec.w);
}
inline ffw::Vec4<T>& operator *= (const Vec4<T>& vec) {
x *= vec.x;
y *= vec.y;
z *= vec.z;
w *= vec.w;
return *this;
}
inline ffw::Vec4<T>& operator = (const T& val) {
x = val;
y = val;
z = val;
w = val;
return *this;
}
inline ffw::Vec4<T> operator + (const T& val) const {
return Vec4<T>(x + val, y + val, z + val, w + val);
}
inline ffw::Vec4<T>& operator += (const T& val) {
x += val;
y += val;
z += val;
w += val;
return *this;
}
inline ffw::Vec4<T> operator - (const T& val) const {
return Vec4<T>(x - val, y - val, z - val, w - val);
}
inline ffw::Vec4<T>& operator -= (const T& val) {
x -= val;
y -= val;
z -= val;
w -= val;
return *this;
}
inline ffw::Vec4<T> operator / (const T& val) const {
return Vec4<T>(x / val, y / val, z / val, w / val);
}
inline ffw::Vec4<T>& operator /= (const T& val) {
x /= val;
y /= val;
z /= val;
w /= val;
return *this;
}
inline ffw::Vec4<T> operator * (const T& val) const {
return Vec4<T>(x * val, y * val, z * val, w * val);
}
inline ffw::Vec4<T>& operator *= (const T& val) {
x *= val;
y *= val;
z *= val;
w *= val;
return *this;
}
inline bool operator != (const Vec4<T>& vec) const {
return !(*this == vec);
}
inline bool operator == (const Vec4<T>& vec) const {
return (x == vec.x && y == vec.y && z == vec.z && w == vec.w);
}
inline ffw::Vec4<T>& normalize() {
float l = sqrtf(x*x + y*y + z*z + w*w);
if (l > 0) {
x = x / l;
y = y / l;
z = z / l;
w = w / l;
}
return *this;
}
inline ffw::Vec4<T>& scale(const T val) {
x = x*val;
y = y*val;
z = z*val;
w = w*val;
return *this;
}
inline double length() const {
return sqrt(static_cast<double>(x*x + y*y + z*z + w*w));
}
inline float lengthf() const {
return sqrtf(static_cast<float>(x*x + y*y + z*z + w*w));
}
inline T lengthSqrd() const {
return (x*x + y*y + z*z + w*w);
}
T& operator [] (size_t i){
return ((T*)&x)[i];
}
const T& operator [] (size_t i) const {
return ((T*)&x)[i];
}
template <class S>
inline operator ffw::Vec4<S>() const {
return ffw::Vec4<S>((S)x, (S)y, (S)z, (S)w);
}
inline Vec4<T> round() const {
return Vec4<T>(std::round(x), std::round(y), std::round(z), std::round(w));
}
inline Vec4<T> floor() const {
return Vec4<T>(std::floor(x), std::floor(y), std::floor(z), std::floor(w));
}
inline Vec4<T> ceil() const {
return Vec4<T>(std::ceil(x), std::ceil(y), std::ceil(z), std::ceil(w));
}
};
typedef Vec4<float> Vec4f;
typedef Vec4<int> Vec4i;
typedef Vec4<short> Vec4s;
typedef Vec4<long long> Vec4ll;
typedef Vec4<double> Vec4d;
template <class T>
inline T dot(const ffw::Vec4<T>& V1, const ffw::Vec4<T>& V2) {
return (V1.x*V2.x + V1.y*V2.y + V1.z*V2.z + V1.w*V2.w);
}
template <class T>
inline T distance(const Vec4<T>& v1, const Vec4<T>& v2) {
auto v = v2 - v1;
return static_cast<T>(v.length());
}
template <class T>
inline Vec4<T> middle(const Vec4<T>& v1, const Vec4<T>& v2) {
auto v = (v2 - v1) / 2.0;
return v1 + v;
}
template <class T>
inline ffw::Vec4<T> normalize(const Vec4<T>& vec) {
auto copy = vec;
copy.normalize();
return copy;
}
template <class T>
inline std::ostream& operator << (std::ostream& os, const ffw::Vec4<T>& vec) {
os << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w;
return os;
}
};
namespace ffw {
template <>
inline bool ffw::Vec4<float>::operator == (const Vec4<float>& vec) const {
if (fabs(x - vec.x) > std::numeric_limits<float>::epsilon())return false;
if (fabs(y - vec.y) > std::numeric_limits<float>::epsilon())return false;
if (fabs(z - vec.z) > std::numeric_limits<float>::epsilon())return false;
if (fabs(w - vec.w) > std::numeric_limits<float>::epsilon())return false;
return true;
}
template <>
inline bool ffw::Vec4<double>::operator == (const Vec4<double>& vec) const {
if (fabs(x - vec.x) > std::numeric_limits<double>::epsilon())return false;
if (fabs(y - vec.y) > std::numeric_limits<double>::epsilon())return false;
if (fabs(z - vec.z) > std::numeric_limits<double>::epsilon())return false;
if (fabs(w - vec.w) > std::numeric_limits<double>::epsilon())return false;
return true;
}
};
#endif